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A simple case of MRDP theorem.

(b, d) =Vx < bYy < b(X® +y* —2y+d=0).

p.(x,y,d) = x>+ y*>+dand p_(x,y,d) = 2y so the maximum
value of the term p, + p_ is 2b% + d + 2b. This is max(z)).

The number of all possible pairs (x, y) is (b + 1)?
Let pair be any pairing function and assume there exist (b + 1)?
consecutive (relatively) prime numbers> max(v)) :

Po = Ppair(0,0)s P1 = Ppair(0,1)» P2 = Ppair(1,0)> - - - Ppair(b,b)

as well as their product prod.
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Chinese Remainder Theorem. Suppose that there exists t;, t5
that encode all these pairs i.e.

t = 0 (mod py)
tj = Ij (mOd ppair(f17l'2))

i = b (mod ppair(b,b))
forall0 <ij,ip < b,j=1orj=2.
So ¢ is equivalent with

Jt;3t;(above systems At + 2 — 2t + d =0 (mod prod))
which is an 3; formula.
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Given any M F IAy and m € M, are there any consecutive
primes > m as well as their product? Can we enumerate them?

Definitions. 1) primeprod(n,n’) = [],<,<p rprime(p) P
2) The number of primes in the interval [n, n'] is m iff

3z(z=[[ Fa() A 2" = 2).

i<n’

A. Berarducci, P. D’ Aquino Ay- complexity of the relation
¥ = Ili<, F(i) Ann. Pure & App. Logic, 1995

. 1, if =prime(i)Vvi<n
Fn(i) = . N
2, if prime(i) Ni>n
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We write 7>, (n") = m iff the number of primes in the interval
[n,n'] is m. As usual we define 7(n’) := 7>o(n’).

3) Let p > n a prime. pis the m-th prime > n iff 7>,(p) = m.
Enumeration of primes costs:
IAo F exp <> VI3p(prime(p) A w>a(p) = 1).

Ch. Cornaros and C. Dimitracopoulos: A note on
exponentiation, J. Symbolic Logic 58 (1993), 64-71.
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Classes of logarithmic powers.

log(x) denotes [log, (x)], log'® (x) denotes [log, ([log,(x)])] etc.

4) Q) is defined for alln € N :

@,
og(2 .
Vxvy3z(x(09n) e =2)

5) QF : Yxvy3z(x°9"Y = 7).
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Some basic Lemmas.

A) If p > nis a prime and primeprod(n, p) exists, then there
exists some m such that p is the m-th prime > n.

B) IAo F Vn > 2¥m > 2Vp|primeprod(n, p) exists A
p is the log(m)-th(concequtive) prime > n — n'°9(Mexists].

Corollary: If M E IAq has all the products of logarithmically
many consecutive primes, then M E ;.

Similar results hold for models of 2, or ;.
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Converse directions?

Bertrand’s Postulate: Vx > 13p < 2x(prime(p) A p > X).

IAqg+Bertrand’s Postulate
F¥n > 2Vm > 2(3p)(p is the log(m)-th prime > n).

but /Ay+Bertrand’s Postulate t/ 4 products of logarithmically
many consecutive primes above any number n.

..... We need some power!
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Adding some () “power” in M

IAo+ Bertrand’s Postulate +2; + 3 products of logarithmically
many consecutive primes above any number n.

Similar results: /Ag+ Bertrand’s Postulate +3
FVn¥m > 253 products of Iog(s)(m) many consecutive primes
above n.

IAy+ Bertrand’s Postulate +Qs - Ynvm > 253 products of

) log(®) (m)
2 . .
log(m)'e9~(m) many consecutive primes above n.
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Does the existence of products of logarithmically many
consecutive primes above any number n guarantee some
“local” versions of Bertrand’s Postulate?

IAo + 3 product of log(n) many consecutive primes above
ntv1 < x < n*3p < 2x(prime(p) A p > Xx)?

Ch. Kornaros University of Aegean Products of primes in weak systems of Arithmetic



How many primes> 2 exist in M F /A;?

Answer: If Mis any M F IA, then there exist at least /log(m)
many primes for any m > 2.

If Mis any M E IAy+Bertrand’s Postulate, then for any m > 2
there are at least log(m) primes> 2 i.e.

Jp < m(prime(p) A 7(p) = log(m)).

M E I1Ao+ weak-PHP(Ay) and m is an element of M such that

2M e M, then there exist more than m primes> 2 in the interval
[2,26m],
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Weak PHP(A)

Vx—(f: x> — x and fis 1-1) for any A, definable f.

1A + %, s > 1, is strong enough to prove weak-PHP(Ay).
weak-PHP(A,) is strong enough to prove m>m(m'!) > 0i.e.
there are many primes above any m € M. For details see

J. B. Paris, A. J. Wilkie and A. R. Woods: Provability of the
pigeonhole principle and the existence of infinitely many
primes, J. Symbolic Logic 53 (1988), 1235-1244.

Ch. Kornaros University of Aegean Products of primes in weak systems of Arithmetic



Some Consequences

If M satisfies some 2 then M has strictly more primes than
log(m),m > 1.

Examples. If M F 1A, + 1, then there exist at least log?(m)
many primes for any m > 1 i.e. there exists some prime p:

m(p) > log*(m).

If M E 1A + €3, then there are at least log(m)log® (m) many
primes for any m > 1 i.e. there exists some prime p:

m(p) > log(m)log®® (m).
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Equivalences of (2 hierarchy with products of

primes under Bertrand’s Postulate.

If we add the hypothesis that M FBertrand’s Postulate then we
can also conclude that the product of these primes also exists:

IAo+Bertrand’s Postulate - Ym > 13p3x(x = primeprod(2, p)
Ap is the log®(m)-th prime > 2) « Q,. Bertrand’s Postulate is
needed only for the implication(«+—).

Similar equivalences for all 2 axioms. For example:
IAg+Bertrand’s Postulate - Vm > 13p3x(x = primeprod(2, p)
Ap is the log(m)'°9” (M)_th prime > 2) <+ Q5. Bertrand’s
Postulate is needed only for the implication(«+).
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Equivalences of () hierarchy with products of

primes without Bertrand’s Postulate.

Paola D’ Aquino results:

IAg = Vx> 1Vy(y = 2¥ — 3z < y?(z = primeprod(2, X))
IAo - VX > 1Vz(z = primeprod(2, x) — Jy < uz*(2* = y)), for

some small ;. € N.

Paola D’ Aquino Thesis Exponentiation and Fragments of
Arithmetic, Oxford University 1992.
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Useful Corollaries

A) Number of primes: 1A I Vs > 2[primeprod(2, s°) exists
— Jp < s°(p is the [§]-th prime> 2)].

B) Exponentiation power:
IAg FYm > 2Vz < m(primeprod(2, zlog(m)) exists < 22'09(mM)
exists <> m* exists)

Replacing z = log("™ (m) for any natural n > 1 we also take
IAo - Vm > 2(primeprod(2, log™ (m) log(m)) exists < m/°g"” (M)
exists.
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Useful Corollaries

Q hierarchy:
IAg F Q<> Ym > 2(primeprod(2,log?(m)) exists)
IAg b Q% < Ym > 25(primeprod(2,log'®) (m) log(m)) exists)
IAg F Qs <
log($) (m)

vm > 25(primeprod(2, log(m)'°9” (m)" log(m)) exists)

IAg - exp <> Vm > 2primeprod(2, m) exists
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Last Remark and a Problem

Note that primeprod(2, p), where p is the log®(m)-th prime > 2
is obviously bigger than primeprod(2, p’), where p’ is the
biggest prime p’ < log?(m). So the first below does not
necessarily implies the second:

IAg - ¥Ym > 2(primeprod(2,log®(m)) exists) <+ O
(/Ap+Bertrand’s Postulate )
VYm > 23p3x(x = primeprod(2, p) Ap is the log?(m)-th prime

>2) <

Problem: ? [Ag + Q1 FVm > 23p3x(x = primeprod(2, p) Ap is
the log®(m)-th prime > 2)

Ch. Kornaros University of Aegean Products of primes in weak systems of Arithmetic



Grazie!
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