Products of primes in weak systems of Arithmetic

Ch. Kornaros University of Aegean

37èmes Journées sur les Arithmétiques Faibles 29 May 2018

A simple case of MRDP theorem.

$$\psi(\mathbf{b}, \mathbf{d}) = \forall \mathbf{x} \le \mathbf{b} \forall \mathbf{y} \le \mathbf{b}(\mathbf{x}^2 + \mathbf{y}^2 - 2\mathbf{y} + \mathbf{d} = 0).$$

 $p_+(x, y, d) = x^2 + y^2 + d$ and $p_-(x, y, d) = 2y$ so the maximum value of the term $p_+ + p_-$ is $2b^2 + d + 2b$. This is max(ψ).

The number of all possible pairs (x, y) is $(b + 1)^2$

Let *pair* be any pairing function and assume there exist $(b+1)^2$ consecutive (relatively) prime numbers> $\max(\psi)$:

$$extstyle{m{
ho}}_0 = extstyle{m{
ho}}_{ extstyle{m{
ho}} extstyle{m{
ho}}(0,0)}, m{
ho}_1 = m{m{
ho}}_{ extstyle{m{
ho}} extstyle{m{
ho}}(0,1)}, m{m{
ho}}_2 = m{m{
ho}}_{ extstyle{m{
ho}} extstyle{m{
ho}}(m{m{
ho}},m{m{m{b}}})}$$

as well as their product prod.

Chinese Remainder Theorem. Suppose that there exists t_1, t_2 that *encode* all these pairs i.e.

$$t_j \equiv 0 \pmod{p_0}$$
 \vdots
 $t_j \equiv i_j \pmod{p_{pair(i_1,i_2)}}$
 \vdots
 $t_j \equiv b \pmod{p_{pair(b,b)}}$

for all $0 \le i_1, i_2 \le b, j = 1$ or j = 2.

So ψ is equivalent with $\exists t_1 \exists t_2 (\text{above systems} \ \land t_1^2 + t_2^2 - 2t_2 + \textit{d} \equiv 0 \pmod{\textit{prod}})$ which is an \exists_1 formula.

Problem.

Given any $M \models I\Delta_0$ and $m \in M$, are there any consecutive primes $\geq m$ as well as their product? Can we enumerate them?

Definitions. 1)
$$primeprod(n, n') = \prod_{n \leq p \leq n' \land prime(p)} p$$

2) The number of primes in the interval [n, n'] is m iff

$$\exists \mathbf{z}(\mathbf{z} = \prod_{i \leq n'} \mathbf{F}_n(i) \land 2^m = \mathbf{z}).$$

A. Berarducci, P. D' Aquino Δ_0 - complexity of the relation $y = \prod_{i \le n} F(i)$ Ann. Pure & App. Logic, 1995

$$extbf{\textit{F}}_{\textit{n}}(\emph{i}) = egin{cases} 1, & ext{if } \neg \textit{prime}(\emph{i}) \lor \emph{i} < \emph{n} \ 2, & ext{if } \textit{prime}(\emph{i}) \land \emph{i} \geq \emph{n} \end{cases}$$

We write $\pi_{\geq n}(n') = m$ iff the number of primes in the interval [n, n'] is m. As usual we define $\pi(n') := \pi_{\geq 2}(n')$.

3) Let $p \ge n$ a prime. p is the m-th prime $\ge n$ iff $\pi_{\ge n}(p) = m$.

Enumeration of primes costs:

$$I\Delta_0 \vdash \mathsf{exp} \leftrightarrow \forall I \exists p(\mathit{prime}(p) \land \pi_{\geq 2}(p) = I).$$

Ch. Cornaros and C. Dimitracopoulos: *A note on exponentiation*, J. Symbolic Logic 58 (1993), 64–71.

Classes of logarithmic powers.

 $\log(x)$ denotes $[\log_2(x)]$, $\log^{(2)}(x)$ denotes $[\log_2([\log_2(x)])]$ etc.

4) Ω_n is defined for all $n \in \mathbb{N}$:

$$\forall \mathbf{x} \forall \mathbf{y} \exists \mathbf{z} (\mathbf{x}^{(\log \mathbf{y})^{(\log^{(2)} \mathbf{y})} \cdot \cdot \cdot \cdot \log^{(n)} \mathbf{y}} = \mathbf{z})$$

5)
$$\Omega_n^* : \forall x \forall y \exists z (x^{\log^{(n)} y} = z).$$

Some basic Lemmas.

- A) If $p \ge n$ is a prime and primeprod(n, p) exists, then there exists some m such that p is the m-th prime $\ge n$.
- B) $I\Delta_0 \vdash \forall n \geq 2 \forall m \geq 2 \forall p[primeprod(n, p) \text{ exists } \land p \text{ is the } \log(m)\text{-th(concequtive) prime } \geq n \rightarrow n^{\log(m)}\text{exists}].$

Corollary: If $M \models I\Delta_0$ has all the products of logarithmically many consecutive primes, then $M \models \Omega_1$.

Similar results hold for models of Ω_n or Ω_n^* .

Converse directions?

Bertrand's Postulate: $\forall x > 1 \exists p < 2x(prime(p) \land p > x).$

 $I\Delta_0$ +Bertrand's Postulate $\vdash \forall n \geq 2 \forall m \geq 2 (\exists p)(p \text{ is the } \log(m)\text{-th prime } \geq n).$

but $I\Delta_0$ +Bertrand's Postulate $\not\vdash \exists$ products of logarithmically many consecutive primes above any number n.

..... We need some power!

Adding some Ω "power" in M

 $I\Delta_0+$ Bertrand's Postulate $+\Omega_1\vdash\exists$ products of logarithmically many consecutive primes above any number n.

Similar results: $I\Delta_0+$ Bertrand's Postulate $+\Omega_{\rm S}^*$ $\vdash \forall n \forall m \geq 2^{\rm S} \exists$ products of $\log^{(\rm S)}(m)$ many consecutive primes above n.

 $I\Delta_0+$ Bertrand's Postulate $+\Omega_{\mathbf{s}} \vdash \forall n \forall m \geq 2^{\mathbf{s}} \exists$ products of $\log(m)^{\log^{(2)}(m)}$ many consecutive primes above n.

A Question

Does the existence of products of logarithmically many consecutive primes above any number *n* guarantee some "local" versions of Bertrand's Postulate?

 $I\Delta_0 + \exists$ product of $\log(n)$ many consecutive primes above $n \vdash \forall 1 < x \le n^2 \exists p < 2x(prime(p) \land p > x)$?

How many primes ≥ 2 exist in $M \models I\Delta_0$?

Answer: If *M* is any $M \models I\Delta_0$ then there exist at least $\sqrt{\log(m)}$ many primes for any $m \ge 2$.

If M is any $M \models I\Delta_0$ +Bertrand's Postulate, then for any $m \ge 2$ there are at least $\log(m)$ primes ≥ 2 i.e.

 $\exists p \leq m(prime(p) \land \pi(p) \geq \log(m)).$

 $M \models I\Delta_0 + \text{weak-}PHP(\Delta_0)$ and m is an element of M such that $2^m \in M$, then there exist more than m primes ≥ 2 in the interval $[2, 2^{6m}]$.

Weak PHP (Δ_0)

 $\forall x \neg (f: x^2 \rightarrow x \text{ and } f \text{ is 1-1}) \text{ for any } \Delta_0 \text{ definable } f.$

 $I\Delta_0 + \Omega_s^*$, $s \ge 1$, is strong enough to prove weak- $PHP(\Delta_0)$. weak- $PHP(\Delta_0)$ is strong enough to prove $\pi_{\ge m}(m^{11}) > 0$ i.e. there are many primes above any $m \in M$. For details see

J. B. Paris, A. J. Wilkie and A. R. Woods: *Provability of the pigeonhole principle and the existence of infinitely many primes*, J. Symbolic Logic 53 (1988), 1235–1244.

Some Consequences

If M satisfies some Ω then M has strictly **more** primes than $\log(m), m > 1$.

Examples. If $M \models I\Delta_0 + \Omega_1$, then there exist at least $log^2(m)$ many primes for any m > 1 i.e. there exists some prime p: $\pi(p) \ge log^2(m)$.

If $M \models I\Delta_0 + \Omega_2^*$, then there are at least $log(m)log^{(2)}(m)$ many primes for any m > 1 i.e. there exists some prime p: $\pi(p) \ge \log(m)log^{(2)}(m)$.

Equivalences of Ω hierarchy with products of primes under Bertrand's Postulate.

If we **add** the hypothesis that $M \models Bertrand$'s Postulate then we can also conclude that the product of these primes also exists:

 $I\Delta_0+$ Bertrand's Postulate $\vdash \forall m>1\exists p\exists x(x=primeprod(2,p)\land p$ is the $\log^2(m)$ -th prime $\geq 2)\leftrightarrow \Omega_1$. Bertrand's Postulate is needed only for the implication(\leftarrow).

Similar equivalences for all Ω axioms. For example: $I\Delta_0+$ Bertrand's Postulate $\vdash \forall m>1\exists p\exists x(x=primeprod(2,p)\land p$ is the $\log(m)^{\log^{(2)}(m)}$ -th prime $\geq 2)\leftrightarrow \Omega_2$. Bertrand's Postulate is needed only for the implication(\leftarrow).

Equivalences of Ω hierarchy with products of primes without Bertrand's Postulate.

Paola D' Aquino results:

$$I\Delta_0 \vdash \forall \mathbf{x} > 1 \forall \mathbf{y}(\mathbf{y} = 2^{\mathbf{x}} \to \exists \mathbf{z} < \mathbf{y}^2(\mathbf{z} = \mathit{primeprod}(2, \mathbf{x}))$$

 $I\Delta_0 \vdash \forall \mathbf{x} > 1 \forall \mathbf{z}(\mathbf{z} = \mathit{primeprod}(2, \mathbf{x}) \to \exists \mathbf{y} < \mu \mathbf{z}^4(2^{\mathbf{x}} = \mathbf{y})), \text{ for some small } \mu \in \mathbb{N}.$

Paola D' Aquino Thesis Exponentiation and Fragments of Arithmetic, Oxford University 1992.

Useful Corollaries

- A) Number of primes: $I\Delta_0 \vdash \forall s \geq 2[\textit{primeprod}(2, s^5) \text{ exists } \rightarrow \exists p \leq s^5(p \text{ is the } [\frac{s}{2}]\text{-th prime} \geq 2)].$
- B) Exponentiation power:

$$I\Delta_0 \vdash \forall m \geq 2 \forall z \leq m(primeprod(2, z \log(m)) \text{ exists} \leftrightarrow 2^{z \log(m)} \text{ exists} \leftrightarrow m^z \text{ exists})$$

Replacing $\mathbf{z} = \log^{(n)}(\mathbf{m})$ for any natural $n \geq 1$ we also take $I\Delta_0 \vdash \forall \mathbf{m} \geq 2(\mathit{primeprod}(2, \mathit{log}^{(n)}(\mathbf{m}) \log(\mathbf{m})) \text{ exists} \leftrightarrow \mathit{m}^{\mathit{log}^{(n)}(\mathbf{m})}$ exists.

Useful Corollaries

Ω hierarchy:

$$\begin{split} & I\Delta_0 \vdash \Omega_1 \leftrightarrow \forall \textit{m} \geq 2(\textit{primeprod}(2,\log^2(\textit{m})) \text{ exists}) \\ & I\Delta_0 \vdash \Omega_{\textbf{S}}^* \leftrightarrow \forall \textit{m} \geq 2^{\textbf{s}}(\textit{primeprod}(2,\log^{(\textbf{s})}(\textit{m})\log(\textit{m})) \text{ exists}) \\ & I\Delta_0 \vdash \Omega_{\textbf{S}} \leftrightarrow \\ & \forall \textit{m} \geq 2^{\textbf{s}}(\textit{primeprod}(2,\log(\textit{m})^{\log^{(2)}(\textit{m})} \cdot \frac{\log^{(\textbf{s})}(\textit{m})}{\log(\textit{m})} \log(\textit{m})) \text{ exists}) \\ & I\Delta_0 \vdash \textit{exp} \leftrightarrow \forall \textit{m} \geq 2\textit{primeprod}(2,\textit{m}) \text{ exists} \end{split}$$

Last Remark and a Problem

Note that primeprod(2, p), where p is the $\log^2(m)$ -th prime ≥ 2 is obviously bigger than primeprod(2, p'), where p' is the biggest prime $p' \leq \log^2(m)$. So the first below does not necessarily implies the second:

$$I\Delta_0 \vdash \forall \textit{m} \geq 2(\textit{primeprod}(2, \log^2(\textit{m})) \text{ exists}) \leftrightarrow \Omega_1$$

 $(I\Delta_0 + \mathsf{Bertrand's Postulate} \vdash)$ $\forall m \geq 2 \exists p \exists x (x = primeprod(2, p) \land p \text{ is the log}^2(m) - \mathsf{th prime}$ $\geq 2) \leftrightarrow \Omega_1$

Problem: ? $I\Delta_0 + \Omega_1 \vdash \forall m \geq 2 \exists p \exists x (x = primeprod(2, p) \land p \text{ is the } \log^2(m)\text{-th prime} \geq 2)$

Grazie!